If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y+10y^2-4=0
a = 10; b = 7; c = -4;
Δ = b2-4ac
Δ = 72-4·10·(-4)
Δ = 209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{209}}{2*10}=\frac{-7-\sqrt{209}}{20} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{209}}{2*10}=\frac{-7+\sqrt{209}}{20} $
| 5x+5-5=45 | | (3÷(a-5))-(3÷(3a-1))=1 | | 2n+n=180 | | 3x+20+2x-15=180 | | a2-8a=-36 | | 5a*5a-44=81 | | 5(a+1)=2 | | (x-3)^2=4/25 | | U^2+u+1=0 | | 5/9(f-32)=-19 | | 4/5(7y+3)=10 | | 0,5x+2=-1x+0,5 | | 4(3w+4)/5=0 | | 5(x-4)=3x*2 | | 8*x=250+106 | | -8k^2+36k+36=0 | | 8x^2-10x-15=0 | | x/2=65+x/4 | | 3q+9=18 | | 12,5y+4=3y-15 | | 5x2=2x+17 | | 16a-20=26a | | 4z/9+1=7 | | x/8+5=10 | | 0.5x20=10 | | x+(x-36)=49 | | 13(10+11v)-3(4v+3)=2 | | 5,5x=4x+8 | | 3x-2=6x+ | | 3+13b=8b-7 | | 8,5x+19=2 | | -6x-8=-2x+9 |